

GENTABLE (INVOICE PLUG-IN)

Configuration and Administration

VERSION 2.0

GenTable: – Configuration and Administration 2

© Copyright 2011 otris software AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by

any means without express written permissions of otris software AG. Any

information contained in this publication is subject to change without notice.

All product names and logos contained in this publication are the property of their

respective manufacturers.

otris software AG reserves the right to make changes to this software. The

information contained in this manual in no way obligates the vendor.

GenTable: – Configuration and Administration 3

Table of Contents

1. Introduction ... 4

1.1 Overview .. 4
1.2 The most important properties & features ... 4
1.3 Using the software component as an Invoice plug-in 5

2. Configuration and Customization .. 6

2.1 Integration into DOCUMENTS 4 .. 6
2.2 Defining the configuration file .. 10
2.2.1 Basic settings ... 10
2.2.2 Defining individual table columns/fields .. 11
2.2.3 Restricting the content .. 13
2.2.4 Restricting visibility .. 13
2.2.5 Querying external databases ... 16
2.2.6 Defining buttons .. 17
2.2.7 Multiple configuration files for a file type .. 17
2.3 Customizing the user-defined script file .. 18
2.4 Internationalization .. 21
2.4.1 Internationalization within the configuration file 21

3. Implementing Your Own Scripts & Script API .. 22

3.1 Introduction ... 22
3.2 The internal data model's functions .. 22
3.2.1 The access functions .. 22
3.2.2 The editing functions ... 24
3.3 Functions of the displayed table ... 25
3.3.1 The access functions .. 25
3.3.2 The most important main functions ... 26

4. Usage Examples & Standard Functions .. 27

5. Errors & Causes .. 30

6. Table of Figures.. 32

GenTable: – Configuration and Administration 4

1. Introduction

1.1 Overview

The Web-based software component GenTable is integrated into DOCUMENTS 4;

in addition to running with Internet Explorer version 6.x or later, it runs with

Mozilla/Firefox version 1.0 or later.

GenTable is generally suited for representing any number of table or item-related

data in a user-friendly manner. This data can then be edited and saved by the

user.

Moreover, even your own implemented scripts can be integrated. External data

from relational databases can also be embedded.

Important features are additionally saving the table data and the configuration

data in XML file format as well as client-side execution of the bulk of the

application to minimize data traffic and easing the load on the server.

1.2 The most important properties & features

The GenTable component's most important properties and features:

 User-defined representation of any type of table or item-related data.

 Saving the table data and configuration data in XML file format.

 Client-side processing of data to minimize the server load.

 Allowed element types of table output are text fields, multiline text fields,

drop-down lists, checkboxes, static text, and (graphic) buttons.

 More application-specific helper functions, e.g. split transaction as well as

automatic calculation of individual item amounts and the total amount for

invoice files.

 Extensibility by integrating your own scripts using the script API.

 User-defined integration of any external data from relational databases to the

different text fields, multiline text fields, drop-down lists and checkboxes.

 External data may additionally be dependent on the logged-in user, on any

values of the DOCUMENTS 4 file, or on specific values of the same row.

 Table rows can be dependent on the visible, invisible or readonly definition

(not changeable.

 Linking automatically executed events with specific table columns/fields.

GenTable: – Configuration and Administration 5

1.3 Using the software component as an Invoice plug -in

The best known option available of GenTable so far is its use as a plug-in for

invoice verification in invoice files (Invoice plug-in). The table columns in this case

correspond to the individual categories of an invoice (e.g. purchase order number,

quantity, unit price, total price, cost center, etc.) and the table rows correspond to

the individual invoice items.

GenTable: – Configuration and Administration 6

2. Configuration & Customization

2.1 Integration into DOCUMENTS 4

If the GenTable data files have not yet been installed, the gentable_www.zip

file will be unpacked to the www subdirectory of the installation directory on the

Web server.

To integrate GenTable as a plug-in into DOCUMENTS 4, you need to start the

DOCUMENTS Manager. The individual, existing file types are listed under

Documents / File Types in the tree structure in the left section of the main

window.

Fig. 1: Tree structure in the DOCUMENTS Manager

Now you either open one of the existing file types by double-clicking the

respective file type entry in the tree structure, or you create a new file type via

the New button on the top left of the main menu. To do this, the File Types entry

in the tree structure must be enabled.

GenTable: – Configuration and Administration 7

Fig. 2: Editing or creating a file type

The following items in the General category are important settings for a file type:

a) In the text field Name you need to specify the unique name of the file type.
This name must also be used analogously when defining the XML
configuration file of GenTable.

b) The checkmark in the Released checkbox must be set to release the file type
in DOCUMENTS 4.

To integrate GenTable as a plug-in into the file type, you need to make the

following settings in the Properties category:

Right-clicking in this window and then selecting the Add new property function,

you need to create the property with the label hasInvoicePlugin with the

value true.

Fig. 3: Properties of a file type

a)
b)

GenTable: – Configuration and Administration 8

The individual fields of the file type are listed in the Fields category in the bottom

section of the window for editing the file type. The existing fields can be edited by

double-clicking the respective entry. Other fields can be created by right-clicking

in this section of the window and selecting the Create new data record and insert

it in fields.

Fig. 4: Editing or creating fields

GenTable requires that an additional field for saving the XML table data exist or

be created. In this example, this is the account Assignment field.

Fig. 5: File field dialog

The following settings are the most important items for configuring the field for

the XML table data:

a) In the Name text field, you need to specify a unique name for this field. This
name will analogously be used by GenTable in the XML configuration file.

b) The type of field for the XML table data should be Text or String.

a)

b)

c)

d)

GenTable: – Configuration and Administration 9

c) Because the field may not be displayed with the XML table data, the
checkmark will not be set for the Display in file view checkbox.

d) You can optionally enter predefined XML table data in the Value/Default text
window. The data entered here is entered in the GenTable table by default
every time you create a new file of this type. By simply setting the XML tag for
rows <tr></tr> you can define beforehand how many rows are
automatically displayed on creating a new file. The entries of columns
containing static text or of columns defined as uneditable should be set
because these entries can no longer be made by the user. The table data is
always saved in the following XML structure (in this case, a table with three
columns and three rows, for example):

<table>

 <tr>

 <td title=“Column 1“>SampleEntry1</td>

 <td title=“Column 2“>SampleEntry2</td>

 <td title=“Column 3“>SampleEntry3</td>

 </tr>

 <tr>

 <td title=“Column 1“>SampleEntry4</td>

 <td title=“Column 2“>SampleEntry5</td>

 <td title=“Column 3“>ColumnEntry6</td>

 </tr>

 <tr>

 <td title=“Column 1“>SampleEntry7</td>

 <td title=“Column 2“>SampleEntry8</td>

 <td title=“Column 3“>SampleEntry9</td>

 </tr>

</table>

Thus, the basic settings for integrating GenTable into the DOCUMENTS 4 file are

complete.

GenTable: – Configuration and Administration 10

2.2 Defining the configuration file

Each configuration of GenTable always refers to a specific file type in

DOCUMENTS 4. For this, an XML configuration file named

FileTypeName_Def.xml is created in the www\WEB-INF directory of the

DOCUMENTS 4 installation (e.g. ftInvoice_Def.xml). The DTD file

table_def.dtd can be used with an XML editor to make creation easier.

Below we will explain the individual elements of the configuration file.

2.2.1 Basic settings

<table_def name=““></table_def>: Root element of the configuration file.

The name attribute contains the name of the file type. All other elements are

noted as child element of table_def.

<xmlfield></xmlfield>: Name of the invisible field of the file type where the

XML data is to be saved.

<js_include></js_include>: Contains the file name of the JS/JSP file that

includes the additional file-specific script functions. This entry is always required

because this file also contains general standard functions (see

UserdefinedScripts.jsp).

The <database></database> element allows defining the required parameters

for connecting to a database for this table. Database, driver, user name and

password URL can be specified via the subelements <url></url>,

<driver></driver>, <user></user> and <password></password>.

<init></init>: Contains a JavaScript statement or a JavaScript function call

which is executed on initializing GenTable (initially starting or reloading the page).

<manipulatorClass></ manipulatorClass>: Name of a self-implemented

Java class (manipulator class) which enables server-side manipulation of specific

table data. In this class it is defined which table rows are visible, invisible or

read-only, and which table data should be preliminarily changed in which

manner (e.g. appending the row number to each entry, etc.). If no entry is made,

the data will not be manipulated.

The class must implement the functions
setXMLTableVisibility(HttpServletRequest request, String

rowNumber) and manipulateXMLTableData(String rowNumber), and be

inferred from the abstract parent class XMLTableDataManipulatorImpl that

comes with the software and that provides important variables and help

functions.

<buttonPositions></buttonPositions>: Can accept the values North and

South and determines whether the buttons should be arranged above or below

the table rows.

GenTable: – Configuration and Administration 11

<indexNumbers></indexNumbers>: Defines via true or false whether a

sequential row number should be displayed prior to each row.

<indexCheckboxes></indexCheckboxes>: Defines via true or false

whether a checkbox for selecting the rows should be displayed prior to each row.

<saveAll></saveAll>: Defines via true or false whether all (including

invisible) or only visible table columns should be saved.

2.2.2 Defining individual table columns/fields

The <field></field> element is used to define a column of the table. You

need to define at least one table column.

The detailed settings of the respective column are defined via the following

subelements.

<title></title> (mandatory field:) Contains the column's technical name.

<label></label>: Contains an optional column heading that is displayed in the

user interface. (This can be internationalized, see section 2.4.1)

<type></type>: Field's data type. The following data types are available:

 Text, Default setting

 TEXTAREA, Text field for longer text

 SELECT, Selection list

 CHECKBOX, Checkbox

 STATICTEXT, Static, unmodifiable display text

 BUTTON, Column contains a button

<default></default>: Default value of the field on creating a row.

<editable></editable>: Determines the table column's visibility.

 true: The column is visible and editable.

 readonly: The column is visible but not editable.

 disabled: The column is invisible.

By default, ANY FIELD is editable when creating a new row. This is also true of the

fields which have the readonly value for the <editable> element. To alter

this behavior, version 2.1.0 or higher includes the global setting (the element

must be set to the highest XML document level) named <lastroweditable>. If

the value is set to false here, the readonly fields will not be editable, either,

when creating a new row.

<maxLength></maxLength>: Specifies the maximum number of characters for

fields of the TEXT type. This setting has no function for fields of other data types.

<width></width>: Width of the respective table column in pixels. By default,

the width of the column depends on the column heading.

GenTable: – Configuration and Administration 12

<height></height>: Height of table column cells in pixels. By default, the

height depends on the cell content.

<class></class>: Name of an additional CSS class for the column's cells.

<event type=““></event>: Registers a JavaScript event using the column's

input element. The name of the event is used here as the type (e.g. onBlur). The

event element must include a JavaScript function call.

<isLogin></isLogin>: When setting isLogin to true (see above), the login

name of the currently logged-in user will be used as the presetting when creating

a new row for the respective column.

<option value=““></option>: (May occur several times). Defines the

options if the column is of the SELECT type. A technical value that will be saved

when the option is selected can be specified in the value attribute. This value can

be internationalized (see section 2.4.1).

<clearExisting></clearExisting>: If external dynamic data is integrated

into drop-down lists (SELECT) in a table column but the currently saved value can

no longer be found in the database query, this entry will be removed from the

drop-down list (true, default). Otherwise, this entry will be additionally included

in the selection (false).

<buttonLabel></buttonLabel>: Contains the label of the button if the

column is of the BUTTON type.

: To convert conventional buttons as the column element type to

graphic image buttons, you can specify an image file (file name with the .gif or

.png extension) here. The image file(s) should reside in the

www/images/dlc/gentable folder of the DOCUMENTS 4 installation on the

Web server. Otherwise, the image path must be specified in relative terms from

the www directory (e.g. images/testimage.gif). To be able to additionally

highlight a disabled image button, you need to store the corresponding image

with the _dis extension in the same folder (e.g. testimage_dis.gif). The

width and height attributes can also be used to determine the size of the

image.

GenTable: – Configuration and Administration 13

2.2.3 Restricting the content

Various restrictions can be set for a field:

For a text field with numeric input, you need to add a constraint name

<constraint>NUMBER</constraint>. The field will then be checked for

correct input on saving it.

If the field should be created as a mandatory field, you can specify

<constraint>MANDATORY</constraint> for this field.

2.2.4 Restricting visibility

The option to control visibility of rows and columns in the Gentable plug-in

depending on various conditions is available. Both on rows and column level you

can define rules that:

 Compare a field of a row with a fixed value

 Compare a field of a row with a fixed value and check whether the current

user is a member of a specific access profile

 Check whether the current user is a member of a specific access profile

 Compare a file field with a fixed value

 Compare a file field with a fixed value and check whether the current user is a

member of a specific access profile

 Compare a file field with the value of a field of a row

 Compare a file field with the value of a field of a row and check whether the

current user is a member of a specific access profile

 Compare a file field and/or a field of a row with the value of the system-wide

auto text or a property of the current user

These different combinations will be used in a sample definition file at the end of

this section.

Additional settings options:

 The "columnsAlwaysVisible" parameter is optional; it ensures that the column

heading is always displayed, even if none of the rows contains a visible value

in a column.

 There are two rule types: "READONLY" and "INVISIBLE"

 If the "invert" attribute is set to "true" in a rule, the logic of that rule will be

reversed (see example of Field3). Here the READONLY column is set for all

users who are NOT members of the "Administrator" access profile.

GenTable: – Configuration and Administration 14

Important note:

Restricting visibility only impacts on the Web interface. The underlying data
model is generally fully available to the browser, so visibility restriction must
not be considered a restriction of user permissions.

Sample definition file

<?xml version="1.0" encoding="windows-1252"?>

<table_def name="Invoice">

 <js_include>UserdefinedScripts.jsp</js_include>

 <xmlfield>InvoiceField</xmlfield>

 <saveAll>true</saveAll>

 <columnsAlwaysVisible>false</columnsAlwaysVisible>

 <rowCondition>

 <rule type="READONLY" field="Field1" value="2222" />

 <rule type="READONLY" filefield="Creditor" value="ALFKI" />

 <rule type="READONLY" accessprofile="Warehouse" />

 <rule type="READONLY" field="Field5"

 value="Field5" accessprofile="Directors" />

 <rule type="READONLY" filefield="Creditor"

 value="OTRIS" accessprofile="Administration" />

 <rule type="READONLY" autotext="%currentUser.$AllowedAmount%"

 field="Field4" />

 <rule type="READONLY" autotext="%currentUser.$AllowedAmount%"

 filefield="Amount" />

 </rowCondition>

 <field number="1">

 <label>Field1</label>

 <title>Field1</title>

 <type>TEXT</type>

 <editable>true</editable>

 <condition>

 <rule type="READONLY" field="Field2" value="Field2" />

 </condition>

 </field>

 <field number="2">

 <label>Field2</label>

 <title>Field2</title>

 <type>TEXT</type>

 <editable>true</editable>

 <condition>

 <rule type="READONLY" filefield="DocumentNr" value="1000" />

GenTable: – Configuration and Administration 15

 </condition>

 </field>

 <field number="3">

 <label>Field3</label>

 <title>Field3</title>

 <type>TEXT</type>

 <editable>true</editable>

 <condition>

 <rule type="READONLY" invert=”true”

 accessprofile="Administration" />

 </condition>

 </field>

 <field number="4">

 <label>Field4</label>

 <title>Field4</title>

 <type>TEXT</type>

 <editable>true</editable>

 <condition>

 <rule type="READONLY" field="Field3" value="2000"

 accessprofile="Administration" />

 </condition>

 </field>

 <field number="5">

 <label>Field5</label>

 <title>Field5</title>

 <type>TEXT</type>

 <editable>true</editable>

 <condition>

 <rule type="READONLY" filefield="DocumentNr"

 value="1111" accessprofile="Warehouse" />

 </condition>

 </field>

 <field number="6">

 <label>Field6</label>

 <title>Field6</title>

 <type>TEXT</type>

 <editable>true</editable>

 <condition>

 <rule type="READONLY" autotext="file:%Creditor%"

 field="Field6" />

 </condition>

GenTable: – Configuration and Administration 16

 </field>

 <field number="7">

 <label>Field7</label>

 <title>Field7</title>

 <type>TEXT</type>

 <editable>true</editable>

 <condition>

 <rule type="READONLY"

 autotext="%currentUser.$AllowedAmount%"

 filefield="CostCenter" />

 </condition>

 </field>

</table_def>

2.2.5 Querying external databases

<sql></sql>: Can be used to get the field contents from an external data

source. In doing so, the database connection specified at the beginning of the

document is used to get the data.

Querying the database can be set for the field in the <sql></sql> element using

the following subelements:

<query></query>: Contains the SQL command to be used for the query.

Various placeholders can be used when specifying this command.

 %userLogin% : Will be replaced with the login name of the currently logged-

in user.

 %FILE_FIELD:FileFieldName% : Will be replaced with the content of the

respective file field of the current DOCUMENTS file.

 %FIELD:ColumnName% : Will be replaced with the value of the respective

column of the current table row.

It is necessary to ensure that all placeholders are always enclosed in single quotes

(e.g. '%FIELD:Item%'). External data can be integrated into drop-down lists,

text fields and multiline text fields and, depending on that, checkboxes can be

checked (DB entry true) or not (DB entry false).

<result></result>: Contains the name of the database column to be used to

query the data.

<key></key>: Contains the name of the database column that contains the

technical value of the result.

GenTable: – Configuration and Administration 17

2.2.6 Defining buttons

The <button></button> element optionally allows creating one or more user-

defined buttons.

The buttons can be set respectively via the following subelements:

<label></label>: Button label. (This can be internationalized, see section

2.4.1).

<function></function>: Function call that will be executed when clicking the

button. CAUTION: Enter functions always without parameter, even if their

signatures contain parameters!

<accessKey></accessKey>: Contains a letter. Pressing the ALT key in

combination with this letter may trigger the button function via the keyboard.

: To convert conventional buttons as column element type to

graphic image buttons, you can specify an image file here (file name with the .gif

or .jpg extension). The image file(s) should reside in the

www/images/dlc/gentable folder of the DOCUMENTS 4 installation on the

Web server. Otherwise, the image path must be specified in relative terms from

the www directory (e.g. images/testimage.gif). To be able to additionally

highlight a disabled image button, you need to store the corresponding image

with the _dis extension in the same folder (e.g. testimage_dis.gif). The

width and height attributes can also be used to determine the size of the

image.

2.2.7 Multiple configuration files for a file type

Facilitating the use of multiple definition files for a file type is possible. The user

can decide here which definition file is to be used for the gentable plug-in at a

specific time or with a specific workflow state. This can be set via the

"genTableDefField" property. The value of this property must match the technical

name of a selection field in the file type. This selection field must include the

names of different available definition files as selection options.

GenTable: – Configuration and Administration 18

Fig. 6: The gentableDefField property

It is imperative that you enable the "saveAll" property in the definition files to
be able to use multiple definition files for a file type.

2.3 Customizing the user-defined script file

An option for integrating any script files or JSP files containing user-defined

JavaScript functions into GenTable is available. By default, this is the

UserdefinedScripts.jsp file that comes with the software. This file contains

important functions that have been implemented, such as copying table rows,

deleting table rows, appending a new table row, and moving table rows.

Furthermore, more specific functions for the use of invoice verification have been

implemented as an Invoice plug-in. For instance, these are the functions for

calculating individual item prices, calculating and verifying the invoice total,

formatting price fields, and split transaction.

These functions, however, partially require the exact column names, so that they

can access individual cells, and work correctly. That is why the user-defined script

file UserdeinfedScripts.jsp must be customized to the respective file type

and the changing configuration settings. For this purpose, a separate section has

been set up directly at the beginning of this file. The corresponding variables can

be filled with the correct names of specific file fields and specific table columns

there. Moreover, there you can define whether the additional script file

crmUserdefinedScripts.jsp that contains functions for the Scorecard file (to

supply evaluations/votes/ratings???) should be integrated.

GenTable: – Configuration and Administration 19

This section looks as follows; the terms to be changed are in bold:

/**

*/

/** BEGIN script configuration !!! **/ **/

/** CAUTION: Names/IDs for various file fields and invoice item columns,

etc. (in this case, define centrally according to file type) *******/

/**

*/

 /* ID of Total amount field of the corresponding file */

 String fileFieldAmount = "Amount"; /* e.g. "TotalAmount_Gross" or

"Total" or "Amount" */

 /* ID of order quantity column of individual invoice items (see

<title> tag of the corresponding table column in the Def file) */

 String posCount = "amount"; /* e.g. "Order quantity" or "number" or

"quantity" */

 /* ID of unit price column of individual invoice items (see <title>

tag of the corresponding table column in the Def file) */

 String posPrice = "unitprice"; /* e.g. "UnitPrice_Net" or "unit

price" or "price" */

 /* ID of the total price column of individual invoice items (see

<title> tag of the corresponding table column in the Def file) */

 String posAmount = "value"; /* e.g. "TotalAmount_Net" or "Total

price_Net" or "total price" or "Amount" */

 /* ID of audit field of the corresponding file */

 String fileFieldChecking = "substantiveExamination";

 /* ID of the verifed column of individual invoice items (see <title>

tag of the corresponding table column in the Def file) */

 String posChecking = "checked";

 /************************* for CRM script

**/

 /* Information for integrating the additional CRM script */

 String crmScripts = "no"; /* "yes" or "no" */

%>

The section on customizing variables use is followed by the definition of callback

functions that can be customized to individual requirements.

These are functions that are called prior to and/or after important operations

such as saving the table or table output, and that allow you to trigger execution of

GenTable: – Configuration and Administration 20

more desired functions. The callback functions include the

callbackDrawtablePost() (execution directly after table output),

callbackSavePre() (execution directly prior to save operation), and

callbackSavePost() (execution directly after the save operation) functions.

The required operations or function calls should be defined in these functions,

and unwanted operations should be commented out.

The callbackDrawtablePost() function, for example, could look as follows:

function callbackDrawTablePost()

{

 //Automatically format table price fields accordingly

 formatPriceFields();

//Calculate and enter rating scores

 //calculateScores();

}

Here the function for formatting price fields is enabled, whereas the function for

calculating the rating scores on the Scorecard file is commented out.

GenTable: – Configuration and Administration 21

2.4 Internationalization

Gentable can be employed and used for multiple languages. Thus, for instance, all

software component messages are output in the corresponding language.

Language conversion takes place via the DOCUMENTS Manager. Preconfigured

languages are English and German. Individual language versions can be easily

changed, and you can also add other languages. The language files reside in the

www/WEB INF/classes/ subdirectory of the DOCUMENTS 4 installation on the

Web server; they are all named

GenTablePinstrings_xx.properties.

Instead of the xx, the locale code of the corresponding language, according to ISO

standard (e.g. en for English, and de for German) is displayed. The individual

language terms are defined as value pairs in these properties files (e.g.

saveButton=Save). English is the default language in the

GenTablePinstrings.properties file.

To create a new language file, you simply need to copy one of the existing

language files, change the locale code in the file name accordingly, and customize

the individual language versions in the file to the corresponding language.

2.4.1 Internationalization within the configuration file

All <label></label> and <option></option> elements within the

configuration file may contain internationalized contents. For this, the following

syntax is used:

<label>DefaultValue;de:German;en:English;fr:French</label>, etc. ...

In the case of <label> the default value will be displayed if the description does

not include the language set for the current user. In the case of <option> the

default value is additionally used as a technical value for saving the option.

GenTable: – Configuration and Administration 22

3. Implementing Your Own Scripts & Script API

3.1 Introduction

In addition to customizing GenTable to the respective requirements, you can

integrate other script functions you have implemented yourself. However, this

requires knowledge of JavaScript and of the Document Object Model (DOM). The

JSP file UserdefinedScripts.jsp that comes with the software and is

integrated by default includes the bulk of important standard functions, and

functions tailored to the use of the Invoice plug-in, which are implemented as

script functions there. An editor enables you to additionally insert own functions

in this file, or you can create a new JSP file containing the desired script functions,

and integrate it into the software via the XML configuration file. Like the

UserdefinedScripts.jsp file, this user-defined file must reside in the

www/jsp/dlc/gentable/scripts subdirectory of the DOCUMENTS 4

installation on the Web server. The UserdefinedScripts.jsp file can be used

as a template. Below we will briefly introduce the individual functions of the

Script API which roughly break down into two areas.

3.2 The internal data model's functions

The internal data model represents an important area of the Script API. In this

data model, the entire data of a table in an XML element structure are

temporarily saved at internal level in the browser's runtime environment. The

implemented API functions allow accessing all elements or data. You can then

work with that data. The functions can be subdivided into simple access functions,

and in some important editing functions. You should generally use this data model

to make more fundamental changes to the table.

3.2.1 The access functions

The getModelRows() function returns all table rows temporarily saved in the

data model as elements in an array. If no table rows are present, the value null

will be returned.

The getModelCells(rowNumber) function returns all cells/fields of a specific

table row that are temporarily saved in the data model as elements in an array.

The rowNumber parameter specifies the desired row number; the first row

corresponds to the number 0. If the table row does not exist, the value null will be

returned.

GenTable: – Configuration and Administration 23

The getModelCell(rowNumber, columnTitle) function returns a single

table cell temporarily saved in the data model as an element. This table cell is

uniquely determined via the rowNumber (row number; the first row corresponds

to the number 0), and columnTitle (internal column name) parameters. If the

table cell does not exist, the value null will be returned.

The getModelValue(rowNumber, columnTitle) function returns the value

element of a single table cell temporarily saved in the data model. The value

element contains the saved table entry. The table cell is uniquely determined via

the rowNumber (row number; the first row corresponds to the number 0), and

columnTitle (internal column name) parameters. If the table cell does not exist,

the value null will be returned.

The getModelValueEntry(rowNumber, columnTitle) function returns the

actual, saved table entry of an individual table cell temporarily saved in the data

model. This table cell is uniquely determined via the rowNumber (row number;

the first row corresponds to the number 0), and columnTitle (internal column

name) parameters. If the table cell does not exist, the value null will be returned.

The getModelOptions(rowNumber, columnTitle) function returns all

existing (row dependent) selection options of a single table cell temporarily saved

in the data model as elements in an array. The table cell is uniquely determined

via the rowNumber (row number; the first row corresponds to the number 0), and

columnTitle (internal column name) parameters. If no selection options are

present or the table cell does not exist, the value null will be returned.

The getGeneralData(columnTitle, nodeType) function returns the data

elements temporarily saved in the data model and generally valid for a specific

table column in an array. The data that is saved in these elements is valid for the

entire table column, i.e. it is row independent. This is the case if the table column

is filled with external data via a row independent database query. The

columnTitle parameter specifies the internal name of the table column, and

the nodeType parameter specifies the type of the element to be returned

("value" or "options"). That is, either the (row independent) value element is

returned as a single element in an array (for single entry such as for text fields,

multiline text fields, etc.), or the existing (row independent) selection options are

returned as elements in an array (for multiline entries such as drop-down lists). If

no row independent data exists for this table column or it does not contain any

value element or selection option, the value null will be returned.

The getVisibleRowNumbers() function returns an array containing the row

numbers of the visible/displayed table rows temporarily saved in the data model.

These include read-only table rows. The row numbers of invisible table rows are

omitted. Row number count starts with 0. If no visible table rows exist, the value

null will be returned.

The isLastModelRow(rowNumber) function specifies whether the specified

table row is the row that has been most recently saved temporarily in the data

GenTable: – Configuration and Administration 24

model. The rowNumber parameter specifies the row number; the first row

corresponds to the number 0. Depending on the result, either true or false is

returned.

3.2.2 The editing functions

The deleteModelRow(rowNumber) function deletes a specific row of the table

rows temporarily saved in the data model, including all entries and subelements.

However, this only refers to rows declared visible (or read-only) in the data

model; rows declared invisible remain unaffected. The rowNumber specifies the

row number; the number 0 corresponds to the first (visible) table row.

The cloneModelRow(rowNumber) function copies a specific row of the table

rows temporarily saved in the data model, including all entries and subelements.

However, this only refers to rows declared visible (or read-only) in the data

model; rows declared invisible remain unaffected. The rowNumber specifies the

row number; the number 0 corresponds to the first (visible) table row.

The appendNewModelRow() function creates a new table row temporarily saved

in the data model, including all subelements, which is declared as visible. The row

contains empty entries or the corresponding predefined default values; it is

appended to the end of the table in the data model.

The moveModelRow(rowNumber, direction) function moves a specific row

of the table rows temporarily saved in the data model, including all entries and

subelements, up or down one position. However, this only refers to rows declared

visible (or read-only) in the data model; rows declared invisible remain

unaffected, and are skipped. The rowNumber specifies the row number; the

number 0 corresponds to the first (visible) table row. The direction parameter

determines whether the row is moved up ('UP’) or down ('DOWN’).

GenTable: – Configuration and Administration 25

3.3 Functions of the displayed table

The other important area of the Script API includes the functions of the displayed

(HMTL) table. These functions allow direct access to the HTML element structure

of the table output, and to all table data. This enables modifying individual entries

in a more direct way.

3.3.1 The access functions

The getHTMLRows() returns all displayed table rows as elements in an array. If

no table rows are present, the value null will be returned.

The getHTMLCells(rowNumber) returns all cells/fields of a specific, displayed

table row as elements in an array. The rowNumber parameter specifies the

desired row number; the first row corresponds to the number 0. If the table row

does not exist, the value null will be returned.

The getHTMLCell(rowNumber, columnTitle) returns an individual,

displayed table row as an element. This table cell is uniquely determined via the

rowNumber (row number; the first row corresponds to the number 0), and

columnTitle (internal column name) parameters. If the table cell does not exist,

the value null will be returned.

The getHTMLEntry(htmlCell) returns the actual entry of an individual,

displayed table row, regardless of its element type. The htmlCell parameter is

used to pass the table row itself as an element. If the table cell does not exist, the

value null will be returned.

The setHTMLEntry(htmlCell, value) function occupies a displayed table

row with a specific value/entry if the cell's element type is a text field, a multiline

text field or static text. The htmlCell passes the table row itself as an element;

the value parameter is used to pass the entry/value to be set.

The getActiveHTMLCell(evt) function returns the displayed table row as an

element in which the current event was triggered. The evt parameter is used to

pass the current (looped through) JavaScript event object.

The getActiveHTMLRow(evt) function returns the displayed table row in which

the current event was triggered as an element. The evt parameter is used to pass

the current (looped through) JavaScript event object.

The getActiveHTMLRowNumber(evt) function returns the row number of the

displayed table row in which the current event was triggered. The evt parameter

is used to pass the current (looped through) JavaScript event object.

If this table row does not exist, the value null will be returned.

The getSelectedHTMLRowNumbers() function returns an array containing the

row numbers of the displayed table rows selected by the user (respective index

checkboxes checked).

GenTable: – Configuration and Administration 26

The getHTMLFileField(fileFieldName) function returns a specific,

displayed file filed as an element. It therefore does not directly refer to the table,

but to the file. The fileFieldName parameter specifies the internal name of

the file field.

The setHTMLFileField(fileFieldName, value) function occupies a

specific, displayed file field that contains a specific value/entry. It therefore does

not directly refer to the table, but to the file. The fileFieldName parameter

specifies the internal name of the file field; the value parameter passes the

value/entry to be set.

3.3.2 The most important main functions

The drawTable() function redraws the complete table to be displayed. For

instance, you should open it with the internal data model after these changes to

make the effects of the editing processes visible.

The prestoreTable(checkData) function triggers temporary saving of

currently displayed table and its data in the internal data model. You should start

this function after the changes to the table data, so that the changes are

imported. The checkData parameter determines whether the data is checked for

adhering to the predefined conditions/constraints (true) or not (false).

Normally, false can be passed here because verification is by default performed

while saving permanently.

The reloadRow(evt) function triggers reloading a specific, displayed table row

through a new server-side data query, and the redrawing of this individual table

row. This function is used as an event function if the entries of a table row depend

on the entries of another table row, for example. The table row is determined by

the JavaScript event object passed in the evt parameter which is automatically

passed through linking the fields of a table column with a specific type of event.

When implementing your own script functions, you should remember that the

prestoreTable(false) function is executed prior to calling the functions of

the internal data model to incorporate the changes that the user may have made

in the displayed table into the data model. After editing via the internal data

model function calls you need to call the drawtable() function to make the

changes to the table visible.

GenTable: – Configuration and Administration 27

4. Usage Examples & Standard Functions

On the basis of sections of various files, we will now represent some basic

standard functions as Invoice plug-in. After loading a file of the "ftInvoice" type,

the display looks something like this:

Fig. 7: File with Invoice plug-in

Some sample entries were made in the file fields and in the invoice items (table

rows). In the figure below, a new row has been appended via the corresponding

button.

Fig. 8: Appending a new row

GenTable: – Configuration and Administration 28

Fig. 9: Selecting row(s)

The two rows selected via the index checkboxes are to be copied.

Fig. 10: Copying row(s)

After copying the rows, rows are selected, and then deleted.

Fig. 11: Deleting row(s)

The "Split transaction" function (in this case, row 2) is used to copy selected rows

at the same time, and the entries for quantity and amount are halved.

Fig. 12: Performing split transaction

GenTable: – Configuration and Administration 29

Specific fields can also be automatically calculated from the entries of other fields,

e.g. the amount from quantity and unit price.

When verifying the net amount, you will receive a specific message depending on

the comparison to the file amount.

Fig. 13: Verifying the net amount

If, depending on the configuration, specific table columns/fields may only contain

numeric values or may not remain empty, the corresponding message will appear.

Only when all conditions are met can the table be saved.

Fig. 14: Verification on saving

GenTable: – Configuration and Administration 30

5. Errors & Causes

For errors occurring directly after installing GenTable, the cause of which is not

obvious, deleting the work/ subdirectory from the Tomcat directory of the

DOCUMENTS 4 installation may be helpful.

You should also remember that JavaScript must be enabled in the client/user

browsers.

If no XML configuration file exists for the respective file type, or if the name is

wrongly typed or the configuration file is empty, GenTable cannot be loaded and

will terminate with the following error message:

Fig. 15: Missing XML configuration file

If the XML configuration file cannot be read correctly, or the file does not include

a valid XML or specific illegal special characters have been used as XML entries

(e.g. <, >, &, etc.), GenTable will terminate with the following error message:

Fig. 16: Corrupt XML configuration file

The following error occurs if the XML tag <xmlfield> is missing from the XML

configuration file, wrongly typed, or empty.

Fig. 17: No configuration entry for file field, or empty

The following error message will appear if the file field for the table data that is

defined in the XML configuration file is not defined/present in the file type itself.

GenTable: – Configuration and Administration 31

Fig. 18: File field not present

At least a table column in the XML configuration file should be defined:

Fig. 19: No table columns

When integrating external data from a database, the database driver should be

present:

Fig. 20: Database driver

Moreover, the SQL command syntax must be correct to avoid query errors. The

error message contains more information.

Fig. 21: Database query

GenTable: – Configuration and Administration 32

6. Table of Figures

Fig. 1: Tree structure in the DOCUMENTS Manager ... 6
Fig. 2: Editing or creating a file type ... 7
Fig. 3: Properties of a file type ... 7
Fig. 4: Editing or creating fields .. 8
Fig. 5: File field dialog .. 8
Fig. 6: The gentableDefField property .. 18
Fig. 7: File with Invoice plug-in... 27
Fig. 8: Appending a new row ... 27
Fig. 9: Selecting row(s)... 28
Fig. 10: Copying row(s) .. 28
Fig. 11: Deleting row(s) .. 28
Fig. 12: Performing split transaction .. 28
Fig. 13: Verifying the net amount .. 29
Fig. 14: Verification on saving .. 29
Fig. 15: Missing XML configuration file .. 30
Fig. 16: Corrupt XML configuration file .. 30
Fig. 17: No configuration entry for file field, or empty ... 30
Fig. 18: File field not present ... 31
Fig. 19: No table columns .. 31
Fig. 20: Database driver ... 31
Fig. 21: Database query ... 31

	1. Introduction
	1.1 Overview
	1.2 The most important properties & features
	1.3 Using the software component as an Invoice plug-in

	2. Configuration & Customization
	2.1 Integration into DOCUMENTS 4
	2.2 Defining the configuration file
	2.2.1 Basic settings
	2.2.2 Defining individual table columns/fields
	2.2.3 Restricting the content
	2.2.4 Restricting visibility
	Sample definition file

	2.2.5 Querying external databases
	2.2.6 Defining buttons
	2.2.7 Multiple configuration files for a file type

	2.3 Customizing the user-defined script file
	2.4 Internationalization
	2.4.1 Internationalization within the configuration file

	3. Implementing Your Own Scripts & Script API
	3.1 Introduction
	3.2 The internal data model's functions
	3.2.1 The access functions
	3.2.2 The editing functions

	3.3 Functions of the displayed table
	3.3.1 The access functions
	3.3.2 The most important main functions

	4. Usage Examples & Standard Functions
	5. Errors & Causes
	6. Table of Figures

