

SERVER-SIDE SEITIGES JAVA-SCRIPTING

Programming Guide

Scripting Programming Guide 2

© Copyright 2011 otris software AG. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by

any means without express written permissions of otris software AG. Any

information contained in this publication is subject to change without notice.

All product names and logos contained in this publication are the property of their

respective manufacturers.

otris software AG reserves the right to make changes to this software. The

information contained in this manual in no way obligates the vendor.

Scripting Programming Guide 3

Table of Contents

1. Introduction ... 4

2. Defining Java Scripts .. 6

3. Rules and Conventions .. 9

3.1 Technical names and variable names .. 9
3.2 The working copy concept .. 10
3.3 Handling so-called expensive resources .. 13
3.4 Script length ... 15
3.5 Event cascading .. 16
3.6 Potentially dangerous workflow scripts .. 16
3.7 Always declare variables ... 17

4. Examples ... 18

4.1 Call on creating new files .. 18
4.2 Call on saving files .. 20
4.3 Call after saving files ... 23
4.4 Call on deleting ... 24
4.5 Accessing the DOCUMENTS 4 file system .. 25
4.6 Dynamically determining enumeration values .. 26
4.7 Database accesses via scripting... 28
4.8 Caching the data of expensive resources .. 31
4.9 User-defined actions on files .. 32
4.10 User-defined actions an folders .. 34
4.11 Permissioning user-defined actions .. 35
4.12 Run script as a job... 37
4.13 Keeping the file pool populated via JobScript .. 38
4.14 Decisions and guards in the workflow ... 39
4.15 Receive signals in the workflow .. 41
4.16 Send signals in the workflow ... 42
4.17 loginscript, afterLoginScript, setPasswordScript .. 43
4.18 afterMailScript.. 44
4.19 AccessScript on the file type ... 46
4.20 Extending script classes .. 47
4.21 Singleton files ... 49
4.22 Downloading binary files via user-defined action 50

5. Testing, Debugging and Encrypting .. 52

5.1 Testing scripts... 52
5.2 Extending log output with script executions ... 52
5.3 Customizing script execution parameters ... 53
5.4 Debugging using the Script Debugger ... 54
5.5 Encrypting scripts ... 54

Scripting Programming Guide 4

1. Introduction

The DOCUMENTS 4 server includes an integrated scripting engine. Thus, it

enables server-side execution of JavaScript.

The scripting engine processes JavaScript in JS versions 1.0 to 1.9; from version

1.3, in compliance with the ECMA script 262 specification.

These scripts are defined in the DOCUMENTS Manager. This is performed in the

form of global script objects, which are initially created in a scripting library of the

logged-in principal (Fig. 1).

Fig. 1: Scripting library in the DOCUMENTS Manager

These are then embedded into predefined positions for use. Execution is

performed according to the embedded position during runtime with specific

actions. The following uses of server-side scripts are available here:

­ Default actions on DOCUMENTS files. The script is integrated with a defined

action on the file type:

- On creating new files

- On editing

- On saving

- After saving

- On archiving

- On deleting

- As "Allowed actions" script: This controls globally for the DOCUMENTS

file which actions are generally available to the user.

Fig. 2 shows for a file type in the DOCUMENTS Manager how assigning existing

scripts to specific actions is implemented.

Scripting Programming Guide 5

Fig. 2: Script actions of a file type

­ As user-defined actions on the DOCUMENTS file, and on folders

­ For describing conditions (guards) in workflows

­ As send signal in workflows

­ In the context of field use actions in workflows

­ For defining enumeration values of a field of the enumeration type

This allows implementing specific requirements in DOCUMENTS 4 such as:

­ Drop-down lists that are dependent on the values of other fields

­ Access to third-party databases for filling drop-down lists or field values

­ Complex guard conditions that cannot be defined through simple expressions

­ Automation of processes in the form of job-driven scripts

­ Starting external DLLs to navigate towards third-party systems

­ For calculating data

The DOCUMENTS 4 scripting runtime environment facilitates accessing various

file and field properties. Runtime constants can also be read, such as the currently

involved user or the name of the current workflow step.

Successful creation of scripts requires at least basic knowledge in the

programming language JavaScript and the various classes, objects and properties

provided by the DOCUMENTS 4 scripting interface. Practical knowledge in

administration and configuration of DOCUMENTS 4 are also imperative

prerequisites for understanding particularly the connections between the

individual classes and objects and to be aware of the impacts of specific script

constructions on system performance.

Scripting Programming Guide 6

2. Defining Java Scripts

The central library for Java scripts resides in the DOCUMENTS Manager's tree

structure below the Documents node (see Fig. 1).

Please remember that this entry will only be available in the tree if you are
logged in to a complete DOCUMENTS 4 principal. Simple archive search
principals (so-called EASY Web clients) do not have script capabilities.

Scripts are globally created, tested and administered here. A script object is

essentially composed of a unique name and the source code (Fig. 3). Other

elements, such a script parameters, are not necessarily required for the executions

with defined actions.

Fig. 3: Script structure

Although allocating names does not require any conventions, the use of telling

names which significantly simplify later access to the scripts defined here is

meaningful for use and re-evaluation.

For instance, preceding each script with an abbreviation used to uniquely identify

the project part to which the script belongs may be a good idea. For instance, the

Scripting Programming Guide 7

names of all scripts from the RELATIONS Solution Package start with crm; all

CONTRACT scripts start with lcm; the scripts of the LDAP interface start with

Ldap, etc.

It is also helpful to append the name of the related file type or folder as well as the

calling action.

A script that should be executed on saving a DOCUMENTS file of the file type

crmUser could be allocated the name crmUser_onSave (see example in Fig. 3).

This makes integration easier because the corresponding script can be quickly

retrieved from the library and erroneous assignments are avoided.

Once created, a script can then be integrated into and activated on various events

or anchor points.

The extension option to integrate scripts via so-called properties is available. An

example of this can be found in CONTRACT: When sending a contract via e-mail,

the sent e-mail message is automatically saved in this connection as a file of the

Note for the file type. The script is integrated via a property of the sent contract

file.

Code input using an external editor

The input field for the source code only represents it; however, formatting options

are not provided.

When you click the Edit external button, the script opens, by default, in the

Windows Editor.

However, the option to integrate any external editor and to edit the code using its

functions is available.

In order to be able to use a specific editor as an external tool, this editor must only

meet one essential condition: it must enable passing path and file names in a text

file to be directly opened at program startup.

The external editor is integrated via a property which you enter on the Properties

tab of your principal object. The name of this property is

scriptEditor

The value of the property must be the full path and file name of the editor to be

executed, e.g.

C:\Program Files\tools\notepad++\notepad++.exe

Fig. 4 shows this setting with a sample principal.

Scripting Programming Guide 8

Fig. 4: Integrating an external editor

The use of an external editor includes a variety of advantages for script

development:

­ Syntax highlighting for JavaScript code

­ Indenting the entered source text

­ Retrieving and highlighting in color associated bracket pairs

­ Simple creation of backup copies during code input

­ Integrating versioning tools such as CVs or SVN, for example

Scripting Programming Guide 9

3. Rules and Conventions

Some important general conditions arise in the script programming environment

from project experience; considering them is recommended to guarantee long-

term project success and convenient project maintenance.

3.1 Technical names and variable names

Thus, for instance, DOCUMENTS file structure and its replica as an object of the

DocFile class may be a problem unless you adhere to the so-called programming

language conventions when allocating the technical names of the file fields. These

conventions are particularly known from programming in C/C++ and JAVA, but

they are also valid for many other programming languages, and are generally

considered good programming practice.

Because file fields of a DOCUMENTS file are directly accessed within scripting (as a

publicly visible attribute of a DocFile object), these conventions also fully apply to

scripts:

Technical names and variable names should never be longer than 32 characters.

Reason: only the first 32 characters are significant. If two different variables are

identical in the first 32 characters, which of the two variables is actually used is, as

it were, a coincidence. To illustrate this, here is a very bad example:

Field 1: psThamesSteamLinerVesselCaptainsBunksKey

Field 2: psThamesSteamLinerVesselCaptainsBunksDoorHandle

The part of the two labels that is bold represents the identical first 32 characters,

whereas a difference is only obvious at the end of the labels.

Special characters in technical names and variable names are absolutely

forbidden. This means in particular that umlauts (ä ö ü Ä Ö Ü ß), spaces and

punctuation are forbidden, but also nearly all other special characters to be found

on a standard keyboard.

Only exception to the previous rule: the under_score is allowed; in some

respects, it replaces both spaces and dashes.

So, only use letters (a-z and A-Z) and numbers (0-9). Never start a technical name

or variable name with a number!

Allowed are, for example: psField123 or _100_internal_field.

Absolutely forbidden: 333_at_Procter_factory or EquivalentNumber.

If you do not adhere to these conventions when defining your file types and their

fields, DOCUMENTS 4 will not produce any direct errors; however, you will

effectively obstruct field access from scripts or the other APIs of DOCUMENTS 4.

Scripting Programming Guide 10

Be firm in sticking to the naming conventions described when defining your access

profiles, file types, fields, tabs, number ranges, workflows and public folders for

the technical names.

3.2 The working copy concept

The scripting interface provides two options to edit a DOCUMENTS file. On one

hand, there is the command pair startEdit() and commit(), which emulates

editing and saving a file via the Web interface, while on the other hand, changes

to a DocFile object can also be made directly and synchronized to the underlying

DOCUMENTS file using the sync() command.

To be able to understand this essential difference in processing methods, you

need to be familiar with and understand the concept of working copies. This

concept is based on a central significance in DOCUMENTS as a multiuser

application.

It works as follows:

A user searches a DOCUMENTS file, optionally via search or by navigating through

the public folders.

The user opens an individual DOCUMENTS file, and displays the index fields in the

browser.

When, at that moment, other users open the same DOCUMENTS file, all users

(leaving aside specific permissions here) will view exactly the same contents.

Now, if a user sets the file to edit mode, they will receive exclusive write

permissions on that file right at that moment. No other user can now also edit the

file at the same time. Internally, DOCUMENTS now has created a working copy of

the file for the editing user. This working copy is modified by the user, but not the

original DOCUMENTS file.

This allows other system users to view the current As-Is state of the file during

search/retrieval, but they cannot edit that file because the system is aware that

user A is already editing the file.

Only when user A saves their changes (and, with them, the file) will the changes

made to the working copy be actually be written back to the genuine

DOCUMENTS file. So, only from that moment will these changes be visible again

to all other system users.

Whereas if the editing user discarded their changes, the system would only have

to delete the working copy, so rollback on the genuine DOCUMENTS file would

not be required.

Scripting Programming Guide 11

Thus the concept of the working copy is not only a mechanism that guarantees

transaction security, it is also an important performance feature.

Fig. 5: Working copy concept

However, this working copy concept means for programming scripts that you

need to be clear about when you may use which instructions because

startEdit() also creates a working copy of the DOCUMENTS file, while

commit() generates the genuine DOCUMENTS file from that working copy. The

abort() statement must also be seen analogous to the Cancel button in the Web

interface, i.e. it discards an existing working copy of the DOCUMENTS file.

The result is that these statements may never be used in specific call contexts of

scripts, because otherwise data coherence and system stability can no longer be

guaranteed.

Scripting Programming Guide 12

A working copy of the file already exists for the following scripting events:

­ On creating new files

­ On editing

­ On saving

­ After saving

This means that when you program scripts for exactly these events, you may

never edit the DocFile objects via startEdit() / commit() / abort();

instead, you need to use sync().

Moreover, setting the file object available via context.file to edit mode is also

forbidden for the scripting events "On archiving" and "On deleting".

Additionally, experience has shown that editing files within a workflow or

distribution via startEdit() is critical. More often than not, editing files fails in

that an individual user or user group locks the file due to the current workflow

step; however, other combinations are conceivable which would generally enable

startEdit(). These specific circumstances might result in users simultaneously

accessing the DOCUMENTS file via the Web stumbling on errors that seem to be

inexplicable to them.

Consequence: Sacrifice startEdit() if the file object is in a workflow (now the

current DOCUMENTS 4 version automatically prevents the use within the

workflow. The resultant error message can be read via the

DocFile.getLastError() method).

Inasmuch as you set a file object to edit mode via startEdit() within a script,

you should take some more important basic rules to heart:

Make sure that the return value of the startEdit() call returns "true" on the

DOCUMENTS file.

Make dead sure that by the script's runtime end the corresponding commit() or

abort() has been performed for each startEdit(); otherwise, you will run the

danger of generating an orphaned file in edit mode which can no longer be edited

by any user. Although the scripting engine cleans up such working copies itself at

the script end, there is not always the guarantee that this is performed quickly,

and it is generally considered no good programming practice to improperly close

your own created objects.

Each creation of a working copy via startEdit() by necessity causes the

corresponding load on the database, because the complete file object must be

initially duplicated. Thus, the use of startEdit() represents access to expensive

resources (see below).

So, the above warnings leave the impression that sync() would be the generally

preferable operation for making changes to files via scripting. However, this is

only partially correct because synchronization of a DOCUMENTS file can also be

Scripting Programming Guide 13

performed when it is being edited by a user over the Web (i.e. a working copy

exists).

As a result, the possibility of loss of information exists during synchronizing, at

least in theory, because the Web user can generally overwrite changes made to

field values on the script. The previously listed scripting events, where on principle

a working copy already exists at script start time, are exceptions – the sync()

impacts on the working copy here, not on the DOCUMENTS file "below" it.

So, you should always ensure for each script which has to modify file contents

that you do not risk any critical loss of information where users might be able to

concurrently edit the same files as your scripts.

Besides a simple organizational guarantee of this security, scripting also provides

the option to determine the DocFile object's edit status by reading the "Locked"

and "LockedBy" attributes.

Important rules:

­ Where possible, do without startEdit() and commit().

­ Instead, preferably use the sync() operation.

­ If startEdit() is essential, make sure that the matching commit() or (in case of

failure) abort() is always available.

­ Use these operations sparsely because they cause database load.

3.3 Handling so-called expensive resources

In programming parlance, some operations are referred to as access to so-called

expensive resources. These are usually data sources which – unlike the

computer's main memory – are based on significantly slower media, i.e.

particularly data sources reverting to read-only memory media such as hard disks

or DVD drives, but also resources that are exclusively available via the network

(network shares, external databases such as ODBC data sources, etc.).

These resources are "expensive" in that accessing them takes much longer,

compared to a variable in program memory, and in that the popular operating

systems to which DOCUMENTS is available control file system, network resource

and external (ODBC) data source access via a mostly limited number of so-called

handles.

So it is obvious that programmers handle these resources very carefully, and

should use them as seldom as possible.

Moreover, you should learn to carefully close each "expensive" resource that you

access via scripting afterwards to make the access handles used available to the

system again as soon as possible.

So what does this actually imply regarding your programming practice?

Scripting Programming Guide 14

­ Each DBConnection object that you open should be properly closed via

calling the corresponding close() method.

­ Not only is each DBResultSet object exclusively bound to a DBConnection

object each, it should also always be closed properly on the object by calling

the close() method.

­ Avoid generating tons of DBConnections and DBResultSets within loop

constructs.

­ File objects (i.e. handles on data files of the server file system) must also

be closed properly via close() after using them.

In combination with startEdit() / commit() / abort() and when

building very extensive FileResultset iterators, even the server's own

database is an expensive resource because these operations can cause very

expensive database operations, depending on the structure of their file types,

which may become noticeable through the corresponding high load on the

database. Consequently, you need to handle these methods and objects very

carefully.

Accesses to expensive resources nearly always impact on the script's runtime.

Depending on where a script with accesses to expensive resources is used, the

impact may also occur in unforeseeable places for the individual Web user, and it

is even conceivable that intensive use of expensive resources also impacts on the

system's general response times for all users.

A classic example of this are scripts for generating enumeration value which

optionally generate the available drop-down list values from ODBC data sources

or access DOCUMENTS files of another file type via a FileResultset (in the

latter case, the question usually arises of why not use the essentially more elegant

reference field? However, there are reputed to be use cases of this sophisticated

construction of a drop-down list).

When this enumeration field is selected as "Show in hit list", the result is that

starting a dynamic public folder (even an empty one) that filters on the named file

type, or performing a search (even an unsuccessful one) results in that the script

stored in the drop-down list must be executed, as a result of which the Web

interface's response times can be noticeably extended.

Important rules:

­ Each "new DBConnection()" call requires its matching close()

command.

­ Each generated DBResultSet must be closed properly by calling its close()

method.

­ Preferably, use neither DBConnection nor DBResultSet within loops.

­ Enumeration fields containing script-generated enumeration values should

not appear in hit lists.

­ File handles must also be closed properly via close() after using them.

Scripting Programming Guide 15

3.4 Script length

On the database side, the code field of a script object in DOCUMENTS (versions

5.0, 5.1 and 6.0, all patch levels) is limited to 64 KByte. So, your individual scripts

may not contain more than about 64,000 characters of source text. In encrypted

scripts, the maximum length is even reduced to about 32,000 characters. When

using umlauts and special characters in the code (e.g. in Inline comments), the

maximum length will be further reduced because the umlauts must be saved in

coded format.

By comparison, more sophisticated projects quickly reach these limits, which is

why it is a good idea to get used to modular programming practice.

This simply means that you store code parts in helper functions in library scripts

and for possible configuration of your scripts you also use your own respective

configuration scripts. In your individual main modules you then import the

respective libraries using the statement

#import "ScriptName"

The solution packages CONTRACT, RELATIONS and INVOICE, as well as LDAP

interface, among others, make intensive use of this.

Scripting Programming Guide 16

Important rules:

­ Proceed carefully with conception of your scripts

­ Separate code, helper functions and configuration

3.5 Event cascading

In particular, the events configurable directly on the file type on the "Scripting"

tab are cascaded within a script. This means that if, for instance, from Script "A"

you create a new DOCUMENTS file of a file type "B", with a script "C" being stored

on that file type for execution "on creating new files", then processing Script "A"

will cause processing Script "C" exactly at the time the new file "B" is created.

In practice, this is preferably used when file types are intensely linked among each

other with reference fields and link tabs (i.e. so-called 1:n relationships exist) and

deleting a company file should also automatically delete all contact persons and

discussion notes connected to that company; or, in reverse, deletion of parent

master data from the system should be prevented for as long as accounting data

in the form of transaction files still accessing this master data exists in the system.

Such constructs must inevitably be very well documented; they require a lot of

discipline in project planning and implementation. Also, you need to be

particularly aware of the by no means uncritical impact on the runtime of the

scripts and the Web interface's response time felt by the user.

In this respect, event cascading is a powerful as much as a dangerous tool which

should be used only in small doses and very carefully. In any event, testing such

sophisticated execution contexts very extensively with a variety of test data is

inevitable, as is considering each conceivable edge case in the tests, because

otherwise this might quickly cause loss of valuable real-time values.

3.6 Potentially dangerous workflow scripts

A fixed object relationship exists between DOCUMENTS files and the workflow

containing the DOCUMENTS files. For obvious reasons it is therefore extremely

unwholesome for the workflow if a script that, for example, is modeled as a

receive or send signal deletes the DOCUMENTS file that is still part of the

workflow. In plain English: You would bite the hand that feeds you.

In this case, a valid file object that could be routed through the workflow to the

defined end would no longer exist and, consequently, the file and workflow

construct would no longer be in a defined state. In earlier versions, this could

even lead to a complete crash of the DOCUMENTS 4 Server.

Faulty programming such as the one described above also vividly illustrate the

responsibility that rests with you as a script developer; it should also clearly

Scripting Programming Guide 17

explain why a script programmer needs to be very familiar with administrative

practice and operations from the user's viewpoint.

3.7 Always declare variables

Particularly in Visual Basic programming, the bad habit of declaring variables

improperly instead of using them the moment they are needed for the first time is

very widespread among developers.

This extremely bad programming practice has particularly fatal impact in scripting

because a variable declared improperly via var variableName =

initialvalue; is automatically created through the initial assignment of the

value as a global variable.

However, in this connection "Global" does not refer to individual script execution,

but to the entire server runtime until next reboot.

EACH variable that you use must be declared properly.

Scripting Programming Guide 18

4. Examples

The chapter below will introduce the different options arising from the use of

scripts in a variety of examples. Besides an overview of usage options of the

scripting engine you will find examples described in detail which also demonstrate

the use of the classes provided by the scripting engine.

The examples are deliberately kept simple to get you started. In the further

course these examples are used gradually to implement increasingly more

sophisticated algorithms or requirements.

4.1 Call on creating new files

When you define a script on the file type to execute on creating new files, it will

be executed every time you create a new file of that type. This can be particularly

useful if you want to revert to data from an external database on creating new

files, e.g. to automatically populate the DOCUMENTS file's fields.

However, the following example still omits database accesses; instead, two file

fields are directly populated.

In the DOCUMENTS Manager, create a new script. Give this script the name

psScriptSample_onFileCreation and enter the following source text:

Then save the script by clicking OK.

Now define a simple file type named ScriptSample that consists of only two

fields: a string field with the technical name EmptyField1 and a date field

named EmptyField2. Integrate the script you have just created to the file type

Scripting Programming Guide 19

by opening, on the "Scripting" tab, to the right of "On creating new files", the

selection list containing the available scripts and double-click to select the

psScriptSample_onFileCreation script that has just been defined.

Save the file type after you have released it, and then open a Web browser to log

in to DOCUMENTS. Now create a new file of the file type you have just defined;

the new file is opened in edit mode but both fields have already been filled; the

string field entry reads "Filled" and the current date is entered in the date field

although no default values have been defined on the file type.

In these few lines, this simple example illustrates several powerful tools of the

scripting engine. Initially, it gets the current file from the permanently existing

context object. Because the script is executed on creating new files, this is the

freshly created new file that still does not have any contents except for the stored

default values and auto texts. This DocFile object is referenced in the form of

the myFile variable.

This example then illustrates a programming practice called "restrictive

programming", although it is definitely clear in this exercise on which event this

script is integrated, this is not always guaranteed in practice. Particularly when

fewer experienced users are to integrate scripts into DOCUMENTS you, being the

developer, cannot safely guarantee that your scripts are integrated correctly.

Being the programmer of a script, you are required to ensure that the script has

really been integrated in such a manner that it provides a DocFile object via the

context object – and this is performed in the above example in that the

existence of a valid object is queried in the if() statement.

The "EmptyField1" of this DOCUMENTS file is then assigned the value "Filled".

So, you see that you can access a file's fields using simple statements regardless of

whether the field resides on the default field tab or whether it resides on a field

tab that you have additionally defined.

Write access to the second file field is a bit more complex than with the first field

because this is a date field. Initially, in the code you therefore define a new

variable named "datumString". All you do now is assign it the current date. To

use this opportunity to illustrate accessing file independent auto texts, this

example does not revert to the Javascript-own "new Date()", but the auto text

%currentDate% is read. This date is automatically formatted in the current

language format, i.e. to mm/dd/yyyy for English (U.S.) formatted DOCUMENTS.

However, the date field cannot respond to this string because it expects a Date

object. For this reason it is necessary that you generate a Date object from this

string. If you have already tried doing this using javaScript, you will appreciate the

following functions: util.convertStringToDate(). This expects as

parameter a string representing the date as well as another string that defines the

format of this date string, i.e. in the example, "mm/dd/yyyy". The result is a

genuine Date object that is now assigned to the "EmptyField2" file field.

Scripting Programming Guide 20

The DOCUMENTS file must then only be made aware that it should import the

field values that have just been set. Because it is already in edit mode, however,

this may not be performed through "startEdit()" and "commit()"; instead, it

is performed via a simple "sync()".

4.2 Call on saving files

If a DOCUMENTS file is in edit mode, you can define a script that is called once the

data from the form has been sent to the server. Before synchronizing the working

copy data to the actual DOCUMENTS file takes place, the script can still change

the field data or respond to error conditions.

In this connection the option to cancel the save operation and to keep the user in

the Web interface in edit mode in the DOCUMENTS file is an interesting feature.

This, for instance, allows implementing constraint checks which can check

multiple file fields for syntactically correct coherence, and the like.

If you intend to cancel file saving via script, you should send the Web users a

meaningful error message including the reason for cancellation. This is done by

storing this error message in the context.errorMessage at short notice.

When finally ending the script with a negative return value (to do this, you need

to end the script after assignment with the error message return -1;), it is

exactly this error message that will be made visible in the browser as Alert()

window.

The script described on the next page illustrates such a constraint check.

Scripting Programming Guide 21

For practical rehearsal of this script, we will require a new file type in this example

as well. So, please create a new file type named psONSaveExercise via the

client. In this file type we will then require at least the fields visible from the

following screenshot:

Scripting Programming Guide 22

As you can see, the Company code field should be a drop-down list containing the

three enumeration values "01", "02", and "03". If in addition to non-selection of

a field value you want to test a wrong company code, you can also define

additional enumeration values.

On the Scripting tab you then enter the previously defined script with the

previously displayed source code on the "On saving" event:

So, how does the script work?

At the start of its execution the script initially determines its execution context.

We want to ensure that the scriptis started "On saving", and only in that context.

If the script detects that it has been started in a different context, it will terminate

with an error message. You can test this validation by alternately integrating the

script once "After saving".

Scripting Programming Guide 23

Following this, an attempt is made to get the current DOCUMENTS file, and the

usual restrictive check on whether a valid file object has actually been found, is

performed.

If so, our two file fields are read and the cost center can then be checked for the

correct value via the switch() statement illustrated here, depending on the

selected company code.

Should a cost center number be found outside the respectively valid range, the

previously defined error message will be stored in context.errorMessage and

the save operation will be canceled.

4.3 Call after saving files

An alternative to execution prior to performing the save operation is the option to

execute a script directly after saving it. At the time of calling this scripting event, a

working copy of the DOCUMENTS file no longer exists. The side-effect of this,

however, is that you may never cancel such a script via "return -1;", because

the result of such a cancellation would be that although saving the working copy

back to the file will be executed, the due refresh of the user's browser to follow

will not be performed. As a result, the user will receive the (consequent!) error

message saying "This DOCUMENTS file does not exist!" next time they click "Save"

or "Cancel".

Yet in practice this type of script is generally used to automatically calculate

specific field values depending on other fields. The following example illustrates

this using a fully automatic calculation of sales tax/VAT.

To do this, on the file type, ftInvoice (of the peachit demo prinicipal), define a

script that should be executed after saving the file. In the following example, sales

tax/VAT is calculated from the amount entered (total amount).

The source text of the psftInvoice_afterSave script linked in the previous

screenshot looks as follows:

Scripting Programming Guide 24

The script once again deliberately illustrates restrictive programming, because

despite the previous statement saying returning -1 is forbidden, there is an

exception to this rule: if the script has been started in the wrong execution

context, an error message may and must be logically generated. So, in practice

you should, of course, never omit the security prompts of restrictive

programming.

4.4 Call on deleting

You can also influence the process through a script on deleting a DOCUMENTS file.

The following example, taken from CONTRACT, illustrates in excerpts how, on

deleting a company file, a prior check is made on whether the company, as a

contracting partner, has been assigned contacts or even contracts.

Scripting Programming Guide 25

Initially, of course, the query on the execution context, now commonplace, on

whether this is a valid file object is performed in the code.

Based on the content of the crmId field, the script then creates a

FileResultset each on contract files or contact files. In doing so, lcmCompany

represents a reference field each in both file types in advanced syntax whose key

condition is configured on company's crmId field.

To ensure that the current company file may be safely deleted, both

FileResultsets must be empty (otherwise, deleting the company file would

result in violating data integrity because the references of the found DOCUMENTS

files would be destroyed by deleting the company file).

Moreover, the example illustrates the use of the delete command from the

normal Javascript language range. This is used to release the memory area used

by complex objects. The DOCUMENTS 4 Server's scripting engine allows using this

to influence the integrated Garbage Collector.

4.5 Accessing the DOCUMENTS 4 file system

Accessing the file system of the computer where the server is running constitutes

a regular requirement that may be dangerous to system stability.

In particular, the File class, integrated into the scripting engine, is popularly used

to implement self-defined log files. However, because file system access via this

file class is not threadsafe, this requires considerable additional expenditure to

guarantee exclusive access to a specific data file in the file system.

Normally you guarantee this, for example, by working with a unique, temporary

file name allocated by the server itself per script execution (this approach is also

used in the following sample code). Alternately, you could, with jobs, for

example, be looking for a property at the beginning of script execution on the

principal which, if not found, is immediately created and which, if existent, in

reverse results in that the actual script is not executed until the deliberate

property has been deleted by the other script.

Scripting Programming Guide 26

4.6 Dynamically determining enumeration values

If the versions of a field of the "Enumeration" type are not constant, you can also

define these via a script. The definition of which script is to be executed is defined

as enumeration value through the required runscript:Scriptname.

In project experience, this is popular use to maintain an enumeration field with

the constantly same enumeration values required in various file types at the same

time in a central place. The advantage in this context of implementing this as a

script is in particular that subsequent adjustments to the enumeration values will

become automatically valid for files that already exist in DOCUMENTS, i.e. no

"Change existing files" run will be required. (In reverse, the disadvantage is that

such changes are automatically used for all DOCUMENTS files although this is

exceptionally not desired).

Drop-down list fields dynamically generated via script should never be displayed

in hit lists, because owing to the way in which DOCUMENTS internally handles

Scripting Programming Guide 27

multilingual enumeration values automatically causes the enumeration script to

be executed by starting an unsuccessful search or by displaying an empty dynamic

folder (only this allows the server to determine which ergonomic labels the

technical field values of the enumeration field correspond to).

Thus, a dynamically structured enumeration field is automatically a potentially

very expensive resource!

Another result from dynamic determination of the enumeration values is that

particularly determining the enumeration value as the result of database queries

from external data sources may become very resource-intensive. We strongly

recommend not to dynamically implement enumeration fields with more than 20

to about 30 enumeration values via script from database queries. Instead, in such

cases, the use of the Tabledata Userexits (see documentation on the so-called SQL

Taglib), which in addition to careful handling of the resources includes

considerable increase in convenience as opposed to a drop-down list, particularly

for the DOCUMENTS user, would be recommendable.

Another essential restriction with enumeration scripts is that you may never

return your own return value via the return statement in such scripts because

the array, which the execution context automatically and implicitly contains,

named enumval is also automatically used as a return value at script end. The

following little sample script illustrates the use of enumval for enumeration

values in practice. In doing so, the enumeration values are deliberately configured

in multiple languages:

Integrating this script into a file field (it is assumed that the above script has been

saved as psEnumerationDemo):

Scripting Programming Guide 28

4.7 Database accesses via scripting

With the DBConnection and DBResultset classes, the scripting engine

provides essential support for accessing (external) relational databases.

The little example below illustrates the basic mechanisms to establish a

connection to an ODBC data source to enter a new entry via INSERT command in a

database table for logging purposes.

The (fictional) log table named "ProtocolTable" includes the login, tstamp,

role, wfstep, filekey and filetitle columns (all these are string fields):

Scripting Programming Guide 29

The basic aspects for database handling include consistent error handling, as well

as proper returning of open database handles because these usually are very

expensive resources.

The SampleScript below is used as a receive signal of a DOCUMENTS file in a

workflow. This sample is an invoice, the document number of which (e.g. a

barcode) is used as a primary key in a database table. We assume that a(n)

(fictional) ERP system should influence a column named "BookingState". When

the invoice in the ERP system has been posted, this system should set the posting

state of the invoice to the "booked" value. The following script then signalizes to

the workflow that the invoice file may continue with the workflow, otherwise the

process must continue to be in the wait state.

Scripting Programming Guide 30

The above sample code illustrates, among others, that DBResultsets should also

be closed as early as possible. Moreover, the DocumentNo column from the table

is also selected although its value is not considered further afterwards when

processing the result. This is due to the circumstance that some RDBMS are

available in the market which absolutely expect that the key columns of the

WHERE clause must be part of the selection. This trick should usually be

unnecessary in modern MSSQL, MySQL or Oracle versions.

Scripting Programming Guide 31

4.8 Caching the data of expensive resources

A very regular feature of projects with accesses to external databases in particular

is that – as enumeration script, for example – the same information is always read

from the connected database tables although this only sporadically changes. Yet

this regular access to the expensive "Database" resource is a not insignificant load

on the server.

Consequently, you want an option to buffer this data somehow in the

DOCUMENTS 4 Server's cache.

Exactly this option is available via the PropertyCache available via scripts. This is

always and implicitly available under the name of propCache without any other

instancing and is normally used for exactly this buffer.

The sample below determines some enumeration values from the Northwind

database insofar as the cache named "Contacts" has yet to be created:

Note: To be able to test an enumeration script in the DOCUMENTS Manager, you

need to enable the "Script for enumeration values" checkbox on the "Test" tab.

Scripting Programming Guide 32

A daily executed Job script (the one-liner below) allows ensuring that the cache is

re-populated every day:

4.9 User-defined actions on files

Enriching the functional scope of the system in the context of a single

DOCUMENTS file with additional functionality has now become part of project

practice in the DOCUMENTS environment. A popular option is to define a so-

called user-defined action on a file type. This provides the function thus defined

to each DOCUMENTS file created on the basis of this file type.

This functionality is regularly used to create reports based on the data saved in

the DOCUMENTS file, or to make an export in a specific file format available to the

users.

The sample below creates a Docimport-compatible XML export of the current

DOCUMENTS file (but without documents that the file may contain):

An initial check is made here on whether the script has been started in the correct

context. This illustrates another form of restrictive programming because, being a

Scripting Programming Guide 33

script developer, you cannot necessarily ensure that the recipient of your work

actually uses the script correctly.

Things start to get interesting from line 18 onwards: The technical names of all

fields that the DOCUMENTS file contains are generically (i.e. regardless of file

type!) read at the same time, and their current field values are also temporarily

buffered in generic form and as a string. The advantage of this procedure is that

you do not have to deal with the different data types of different field types;

above all, the script can be used in virtually unchanged form on any file types.

The actual building of the XML structure starts from line 28. In doing so, the script

reverts to an extension of the Java script language range named E4X (EcmaScript

for XML) which can be used in DOCUMENTS.

You will find an in-depth basic article in the magazine i'X, issue 11/2005, published

by Heise Verlag, which very avidly treats the aspects of this script extension for

the DOCUMENTS environment. Additional information can be found using the

popular search engines.

After creating the header data of the DOCUMENTS file, the previously temporarily

buffered field data must be processed. This is illustrated by the second part of the

source text displayed below:

Here, too, a preferably generic procedure is desirable to keep individual

customization expenditure as low as possible.

Eventually, the individual fields are added one after another to the complete XML

structure, the completely built file XML is loaded to the container and the result is

converted to a string using the XML header required for Docimport.

This is then provided to the user for download under the suggested file name

XMLexport.xml.

This script must then be integrated on the "User-defined actions" tab of a file

type. You can choose whether you want the action with a name and label defined

Scripting Programming Guide 34

by you as a button (layout as with workflow action) or as an entry in the Actions

drop-down list.

4.10 User-defined actions an folders

A popular requirement in the DOCUMENTS environment is selecting a selection of

processes (read: DOCUMENTS files) from a folder and exporting the information

saved therein in some format.

The sample script below has been taken from the current ongoing development of

CONTRACT; it illustrates export of deadlines in iCal format to be able to continue

using the deadline data in Outlook or a desktop calendar program:

The script has been entered as a user-defined action on the deadline calendar

folder in CONTRACT.

Scripting Programming Guide 35

4.11 Permissioning user-defined actions

After we have become familiar in the previous two sections with how to extend

the Web interface's functional scope through user-defined actions, the follow-up

question immediately arises on how to ensure that specific user-defined actions

are available for specific user groups, i.e. we are looking for an option to

permission the buttons or action drop-down list entries that we have created

ourselves.

Such permissioning can be performed both on the file type and on public folders

using a specific script that must be entered as an "Allowed actions" script.

Use on the file type:

Use on public folder:

A so-called AllowActions script always has an identical structure that results

from the fact that the scripting engine automatically provides an array with the

technical names of all user-defined actions you entered on the file type or folder.

This array named enumval must iterate through a for() loop and you must

compare the value of each entry with the action name you are looking for.

Scripting Programming Guide 36

Once you have found the right action, you check the respective permission that

you want. Inasmuch as the result of this check is that the the user should not be

able to use this action, you only need to remove the current entry from enumval.

A simple sample script that illustrates exactly this general structure could look as

follows:

Please note that it generally always iterates through the loop; the desired action is

found within the loop and rights validation is only performed within the searched-

for action.

The advantage of this general structure is that you actually execute potentially

"expensive" rights validations only when the action to be permissioned in this way

is actually present.

Another special feature is the circumstance that the script itself does not contain

a return statement. As with enumeration value scripts, the enumval array

implicitly represents the return value; specifying a return statement on your

own is therefore strictly forbidden.

Action buttons and drop-down list entries do not need to be differentiated. In

case both the one and the other have been defined on the file type or folder, the

AllowedAction script will be executed for each action type once. So, please

only make sure that your user-defined actions are always allocated unique and

programming language fit technical names!

Scripting Programming Guide 37

4.12 Run script as a job

Scripts are frequently used for automating regular recurring tasks performed

without user interaction, e.g. automatic archiving of processes. This type of task

can be very easily implemented in the form of so-called Job scripts. The following

example illustrates how such a Job script is implemented, based on automated

archiving of deprecated processes.

To do this, define a script using the following source code:

This script illustrates again the functions for date manipulation and how to filter

DOCUMENTS files based on date comparison operators. Our example filters all

DOCUMENTS files containing a file field named "Expiration date" and whose value

is more than 90 days prior to the current date (Caution! Empty date fields are

automatically less than the current date!). All DOCUMENTS files found through

this filter are now archived in sequence, and removed from the system. Should

an error occur here, the script will terminate with an error message saying which

DOCUMENTS file has caused terminating the job for which reason.

The script requires a user context, because otherwise there will be no access to

DOCUMENTS files. Normally, you enter the matching job user in the DOCUMENTS

settings (this user must, of course, have enough permissions on all DOCUMENTS

files which you want to influence through job control).

Alternatively, you can overwrite this job user for a single job script by entering the

desired login name on the "Test" tab of the respective script.

If you want to understand this example, please add a date field named "Expiration

date" to one of your file types and create some new DOCUMENTS files, some of

Scripting Programming Guide 38

whose expiration dates are more than 90 days in the past. You can significantly

simplify this task when assigning the expiration date the auto-text

"%currentDate – 91%" as the value/default setting.

In the script code, customize Line 8 in such a manner that it filters on the file type

you selected (this example refers to the "Default" file type of the old toastup

demo principal). You can then test the job script.

4.13 Keeping the file pool populated via JobS cript

The file pool is a specific temporary buffer in DOCUMENTS where all DOCUMENTS

files deleted by the file type used in the system and discarded working copies are

temporarily stored. If a DOCUMENTS file of a specific file type is created,

DOCUMENTS will preferably take a file from the file pool because this takes place

at a significant faster rate than completely creating a new file object on the

database.

The file pool, however, is also used through automated file creation such as

through Docimport of the DOCUMENTS Factory; the result of this may be that the

file pool will almost permanently be empty if a large number of new DOCUMENTS

files are generated every day through these automatic imports. The users will feel,

through considerably tougher handling of the system, that the file pool is empty

because in this way new files and working copies must necessarily be generated

directly on the database.

For this reason, there are two methods named countPoolFiles() and

createPoolFile(), which allow a Job script to automatically re-populate the

file pool every night when server load is low.

The script for this looks as follows:

The script will check for the file type "Default" how large the file pool is at runtime

in order to fill up the difference result set up to a threshold (in this case, 3000).

This threshold, of course, depends on the quantity of new DOCUMENTS files of

each individual file type created on average per day; it should be individually

customized.

Scripting Programming Guide 39

4.14 Decisions and guards in the workflow

When designing workflows you will often encounter the problem that the

comparison operators available by default for creating a condition (so-called

guards) are no longer enough, e.g. when calculations are required for validation,

or sophisticated, linked Boolean algebra is required. In this case, too, scripts will

help.

Guard scripts can be used in different functions within the workflow engine. On

one hand, they are used as a condition on a decision shape, while on the other

they can (without having to customize a single line of script code) be used as so-

called constraint checks on control flows emanating from an action (task for user

or groups).

Guard scripts are generally executed within the context of a DOCUMENTS file

(which is available via context.file). In case of a constraint script, the user

running the script is always the user who has selected this control flow in the Web

interface.

In case of a condition on a decision, script execution usually takes place within the

context of the user who last clicked the DOCUMENTS file, i.e. who triggered the

last manual forwarding action of the file. An exception to this, however, is the

situation in which the DOCUMENTS file is delayed by a Delay shape or through a

receive signal before the decision is checked. In that case the Guard is executed

within the job user's context.

A very popular request for a constraint script is - for example, in contract

management scenarios - a check on whether documents have already been added

to the contract file. Submitting the process to the release process is to be

prevented if the DOCUMENTS file does not contain any documents yet.

Such a script could, for example, have the following structure:

Scripting Programming Guide 40

This script is stored on the server under the name

"Contract_SubmitConstraint", for example, to be able to integrate it into a

workflow in Visio afterwards. Let us assume the following workflow with a simple

structure is used:

For convenience we assume the actual release scenario of the contract is

encapsulated within the subworkflow. Only the marked task and the control flow

with the "submit" label emanating from it is relevant to our script.

As you can see in the above screenshot, our script has been configured as a guard.

Because this is a simple check, in our example, the error message that will be

output when a document is missing from the DOCUMENTS file has been hard-

wired in the control flow itself. Alternately, you might store your own error

message in context.errorMessage before ending the script via return 0;.

This simple practical example additionally illustrates that guards and constraints

only permit two specific return values – return 0; means the condition is not

met, while return 1; means it is met.

Scripting Programming Guide 41

4.15 Receive signals in the workflow

In project experience, many workflow scenarios require that the DOCUMENTS

files contained in the workflow be left waiting at a specific point for an external

event to occur. This, for instance, occurs very frequently on purchase invoice

scenarios, where waiting to complete posting an invoice in the customer's ERP

system within the workflow is part of the customer's requirements.

This wait state is usually modeled in receive signal format within the workflow.

The syntactic restrictions of the definable conditions, however, frequently require

that you no longer define the signal condition inline, but as a separate script.

Such a receive signal script can ALWAYS access the DOCUMENTS file in wait state

via context.file. The other script code is completely arbitrary; only the

allowed return values are restricted to the two Integer values 0 (this condition has

not occurred so far) and 1 (the signal condition has been met and the workflow

can continue iterating).

A very simple example, for instance, enforces that the workflow on the

DOCUMENTS file may continue only on Fridays:

Integration of this small script into the workflow could then look as follows:

Scripting Programming Guide 42

4.16 Send signals in the workflow

Requests of the type that the data saved in the DOCUMENTS files must be

exported to third-party software in any format can often be found in workflow-

aided DOCUMENTS scenarios. Depending on which interfaces the third-party

software provides for this, these exports can be performed by using a temporary

database. Increasingly, however, ever more software manufacturers also provide

interfaces such as Web services or interfaces for an XML import.

As a rule, the only snag behind these interfaces is in the structure of the data

required by the third-party provider to be exchanged via these interfaces.

Here the circumstance that the send signal in DOCUMENTS workflows can also be

used to run any script is helpful. The code can then generate any export format,

as it were.

We have already introduced detailed sample code of output in an SQL database or

of creating any separate XML export format in the previous exercises.

To guarantee trouble-free export to third-party system, you only need to consider

more specific workflow modeling because script send signals are completely

iterated even in case of a script error.

Setting a status flag (e.g. "dirty") in the DOCUMENTS file prior to script execution

of the send signal has proven very effective.

Only with successful processing of the complete script of the send signal will the

script then set this status flag to a different value as the last statement (e.g.

"success").

Integrating a decision directly after the send signal which checks the status flag

lets you respond to possible errors in script processing and send the DOCUMENTS

file to a group of administrative users who can troubleshoot the error cause and

re-trigger the export.

Sample implementation of this query could look as follows:

Scripting Programming Guide 43

4.17 loginscript, afterLoginScript, setPasswordScript

Three principal properties allow intervention with the DOCUMENTS login

mechanism. These provide the respectively separate additional environment

variable implicitly at execution time:

­ loginScript – executed prior to user login

login user login

password password entered by user, in plain text

source "SOAPAPI", "instance", "unit", "asUser"

­ afterLoginScript – will be executed after successful login

login user login of user who has just logged in

­ setPasswordScript – will be executed prior to changing password

login user login

oldpassword value of the input field "Previous password"

newpassword value of the input field "New password"

The following small example of a loginScript only checks the current

weekday. For security reasons logins are only permitted from Monday to Friday;

login is denied on Saturdays and Sundays:

Scripting Programming Guide 44

The following example of an afterLoginScript defines a counter as property

on the user which can be used to log the number of successful logins. This, for

instance, would enable statistical evaluation of regular use of the system via

another script:

The example below of a setPasswordScript extends the password check

integrated into DOCUMENTS with a test that users may not set their own first

name as the password:

4.18 afterMailScript

A frequent point of criticism of ad hoc e-mail distribution integrated into

DOCUMENTS is that the information sent via e-mail is virtually not logged.

Although you can see in file status that en e-mail message was sent from the

DOCUMENTS file, you do not learn which contents that message had.

Whereas using a simple file type and the script described below allows

implementing complete logging.

Scripting Programming Guide 45

To do this, you need to create the afterMailScript property on the file type;

the value must be the name of the script to be executed after sending the e-mail

message. The following environment variable will then be implicitly available

within this script:

­ mailSubject Enter subject as with sender in mail dialog

­ mailFrom Sender's e-mail address

­ mailto Recipient(s)'s e-mail address

­ mailBody E-mail content, as entered in the Send dialog

­ mailAttachments Names (!) of the documents sent via e-mail

A possible structure of the file type created for logging could then look as follows:

A useful extension of this file type might be establishing a direct reference

between e-mail files and the original files initially sent via mail using a reference

field. This approach, for instance, has been consistently chosen in the solution

package named RELATIONS to render the complete Support Ticket scenario highly

transparent to all employees involved.

The source text of an AfterMailScripts matching the file type documented in the

screenshot might then look as follows:

Scripting Programming Guide 46

4.19 AccessScript on the file type

The DOCUMENTS rights mechanism absolutely enables very far-reaching and

flexible restrictions of accessing a single DOCUMENTS file; using file class

protection, ACLs or GACLs also enables permissioning at the level of file contents.

Yet some projects regularly require a restriction of write permissions on a

DOCUMENTS file at content level when a larger group of users should at least

have read permissions on the file.

DOCUMENTS allows implementing such requirements using a hidden property on

the file type named "AccessScript", which then requires the name of the script to

be executed.

Such an AccessScript is executed every time read access to a file is attempted; it

can check any conceivable condition (in doing so, it is imperative that you

consider careful resource procedure, because this event is one of the extremely

expensive resources!).

An AccessScript provides four different rights in the form of the familiar array

named enumval:

"DlcFile_RightRead", "DlcFile_RightWrite", "DlcFile_RightChangeWorkflow" and

"DlcFile_RightReactivate".

Scripting Programming Guide 47

The previous page shows the basic structure of an AccessScript in the form of the

sample code. You need to always consider particularly Lines 25-38 in the displayed

form; you must never forget them.

The actual condition, in the example, only a check on whether the currently

logged-in user is the owner of the DOCUMENTS file or not, can be found in code

lines 19-23. You can expand these conditions in any format.

4.20 Extending script classes

Compared to other high-level languages, developers occasionally miss this or that

function in the language range which, however, is very popular in other languages

and would significantly increase convenience in programming. You usually

program the missing functionality yourself, though you will then be faced with the

problem of unique allocation of the helper function xy() to the correct date type.

JavaScript, however, provides a convenient mechanism here to enrich the existing

classes with additional functions.

Scripting Programming Guide 48

This is performed by using the keyword prototype in the function declaration.

The following example extends the Java script array with the two regularly

searched-for method inArray() and removeElement():

The small code below illustrates the use based on a simple array with ten

elements (you simply enter the numbers 1-10). The system initially outputs

whether the element is saved with the value 5 in this array (yes, it is). Then this

particular element is deleted from the array (Line 7) and the system in turn

outputs whether the element named "5" is still found (no, it is no longer found

now).

Scripting Programming Guide 49

4.21 Singleton files

Occasionally, exactly no or exactly one DOCUMENTS file of a specific file type is to

be allowed in the entire system (or user context). A classic example of this

requirement, for instance, is the configuration file of the DOCUMENTS-LDAP

interface, or configuration in CONTRACT v2.

To guarantee simple retrievability of these files, aka "Singleton", the option to link

a script solidly with a dynamically filtered folder is available. Instead of the usual

generation of a hit list on clicking a folder name in the folder tree, the stored

script is executed which then ensures uniqueness of the DOCUMENTS file being

searched for.

Such a script might be structured as follows:

Explaining how it works: An attempt is made to generate a FileResultset on

LdapConfiguration files within the context of the current user. Inasmuch as this

should be unsuccessful or, inasmuch as the created FRS does not contain any hits,

the script will create a new DOCUMENTS file. Whereas if the script finds any hits,

it will return the first file found.

The example deliberately contains two inadequacies: First it is assumed that the

current user has at least read and create permissions on the file type. Secondly,

the script neglects the potential existence of more than one LdapConfiguration

file visible to the user.

The script will then be bound to the desired folder as follows:

It is a good idea to configure the folder's filters exactly to match the file type used

in the script. This will ensure retrievability.

Scripting Programming Guide 50

4.22 Downloading binary files via user-defined action

The problem has previously been that on the server side automatically generated

binary files such as PDFs or automatically created Microsoft Office documents

could not be used as a return value of user-defined actions. The

context.returnType "file:filename.ext" that is usually used for this can

generally only be used with text information because the output within the script

must always be read into a string variable.

In the cases described above, the only option previously available was of

processing in an upload as a new document in a DOCUMENTS file – and the user

then had to manually download the document.

The option to actually download the document directly is available. To do this, the

desired document must be stored in a directory that the server can read.

Der following code illustrates this use:

The example requests a script parameter named pDocument. All documents

stored in the current DOCUMENTS file are then examined on whether their file

name matches exactly the user's input (when demonstrating this feature at DoPaK

2009 an enumeration script in the parameter dialog ensured that the user always

had to select a correct file name).

Inasmuch as the desired document is retrieved, the script downloads it into the

temporary directory of the DOCUMENTS 4 Server and returns it to the user's

browser.

Scripting Programming Guide 51

The trick is in combining code lines 19 and 20. The matching returnType is

defined first. The temporary download, which automatically returns

Path+Filename of the temporary file as a return value, is performed in Line 20.

This is then used to return the document to the client via the return statement.

The disadvantage of this example is that the temp directory on the server is

gradually populated with shreds. So, in practical projects you should ensure that

this directory is regularly cleaned.

Scripting Programming Guide 52

5. Testing, Debugging and Encrypting

5.1 Testing scripts

To test scripts regardless of DOCUMENTS files and workflows, test scenarios can

be defined on the scripts. To do this, you need to define file and user and

workflow parameters, and create the corresponding fields with field values.

The action button Test script... can then be used to run the script. After ending the

script a dialog of return values and field values are displayed.

5.2 Extending log output with script executions

The configuration file named partnernet.ini lets you configure advanced

logging of executing scripts. To do this, the button named

$ScriptLog 1 is used

After enabling this option and restarting the DOCUMENTS 4 Server, each

execution of a script will be logged in the server window (or its log file).

In doing so, two additional output lines appear in the server output per script. At

the start of execution the running script is referred to, and on ending the script

another line is output which refers to the fact that the script named XY was ended

after ABC milliseconds of processing time.

This advanced logging is particularly useful for profiling purposes and when

searching for possible event cascades of scripts.

Scripting Programming Guide 53

Instead of 1, you may also configure Path+File name to a CSV file writable by the

DOCUMENTS 4 Server. In this CSV file, the script name, execution duration and,

where necessary, occurring errors are then logged per execution.

5.3 Customizing script execution parameters

By default, the script engine's server provides memory area of 4 MB (4096 KB) per

script execution. In specific cases, e.g. when a job script processes a large number

of processes at the same time or when DOCUMENTS files with very extensive

Gentable data are manipulated via E4X, this allocated memory area may not be

enough. In such cases, the respective script would be canceled with an "Out of

memory" error message. You can remedy this by customizing the JSMaxMemory

4096 in the server directory's

partnernet.ini file

accordingly. We point out here that the default setting of 4 MB has previously

been proven in practice.

The scripting engine additionally contains some specific check routines to prevent

execution of potential endless loops and, with it, inadvertent paralysis of the

DOCUMENTS 4 Server. Branchings, iterator loops and recursive function calls are

actually audited. These audits should normally be left untouched because they

essentially contribute to the scripting engine's stability. However, in specific

situations, individual protection can be optionally extended or turned off

completely in the server directory's partnernet.ini file using the following

three parameters:

JsMaxBranch Set # to 0 to turn off checking

JsMaxIterator Set # to 0 to turn off checking

JsMaxRecursion Set # to 0 to turn off checking

Caution: Turning the security mechanisms off completely is not recommended on

production systems!

Scripting Programming Guide 54

5.4 Debugging using the Script Debugger

A licensed version of the JSRemote tools provided by otris (now offered as JANUS

Script Debugger) gives you the option to debug your scripts in similar fashion as in

modern development environments.

In doing so, the JANUS Script Debugger provides, among others, a single step

mode incl. setting breakpoints; moreover, you can define so-called watches, i.e.

audits of variable values and expression.

For a detailed description of how to handle the Debugger, please read the product

documentation referring to this.

5.5 Encrypting scripts

The option to automatically encrypt scripts via a maintenance operation is

available. Encryption has no gauging impact on processing speed of scripts

handled in this way; encryption is only used to protect your intellectual property

or against inadvertent changes to potentially dangerous codes.

The maintenance operation encryptScripts:filter is started as usual via the

client from the "Administration > Perform Maintenance Operation" menu item.

You can also use wildcards as filters, e.g. to specifically encrypt all scripts en

bloc with a common prefix (example: encryptScripts:crm*).

In addition, another maintenance operation named encryptMarkedScripts

exists. This is used to automatically encrypt all scripts whose source code contains

the specific comment statement

//#crypt

This specific comment does not necessarily need to be entered as the first code

line of the source code; it can also appear in the later course of the script. In that

case, the first part of the script remains readable in plain text, and customizable;

only the code after the preprocessor statement occurs will then be encrypted.

This circumstance can be used to provide the user / customer with a configuration

scope, but to encrypt the actual script functionality for security reasons.

Warning: The encryption cannot be undone!

Scripting Programming Guide 55

This means you are not capable of channeling scripts that have once been

encrypted back to their unencrypted form! This is why it is highly recommended

that you create an unencrypted backup copy of the original script prior to its

encryption!

In addition, you need to consider that debugging encrypted scripts is not possible.

In particular, this also means that scripts importing encrypted libraries cannot be

analyzed using the ScriptDebugger.

	1. Introduction
	2. Defining Java Scripts
	Code input using an external editor

	3. Rules and Conventions
	3.1 Technical names and variable names
	3.2 The working copy concept
	3.3 Handling so-called expensive resources
	3.4 Script length
	3.5 Event cascading
	3.6 Potentially dangerous workflow scripts
	3.7 Always declare variables

	4. Examples
	4.1 Call on creating new files
	4.2 Call on saving files
	So, how does the script work?

	4.3 Call after saving files
	4.4 Call on deleting
	4.5 Accessing the DOCUMENTS 4 file system
	4.6 Dynamically determining enumeration values
	4.7 Database accesses via scripting
	4.8 Caching the data of expensive resources
	4.9 User-defined actions on files
	4.10 User-defined actions an folders
	4.11 Permissioning user-defined actions
	4.12 Run script as a job
	4.13 Keeping the file pool populated via JobScript
	4.14 Decisions and guards in the workflow
	4.15 Receive signals in the workflow
	4.16 Send signals in the workflow
	4.17 loginscript, afterLoginScript, setPasswordScript
	4.18 afterMailScript
	4.19 AccessScript on the file type
	4.20 Extending script classes
	4.21 Singleton files
	4.22 Downloading binary files via user-defined action

	5. Testing, Debugging and Encrypting
	5.1 Testing scripts
	5.2 Extending log output with script executions
	5.3 Customizing script execution parameters
	5.4 Debugging using the Script Debugger
	5.5 Encrypting scripts

